skip to main content


Search for: All records

Creators/Authors contains: "Thankachan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ranked (or top-k) document retrieval problem is defined as follows: preprocess a collection{T1,T2,… ,Td}ofdstrings (called documents) of total lengthninto a data structure, such that for any given query(P,k), wherePis a string (called pattern) of lengthp ≥ 1andk ∈ [1,d]is an integer, the identifiers of thosekdocuments that are most relevant toPcan be reported, ideally in the sorted order of their relevance. The seminal work by Hon et al. [FOCS 2009 and Journal of the ACM 2014] presented anO(n)-space (in words) data structure withO(p+klogk)query time. The query time was later improved toO(p+k)[SODA 2012] and further toO(p/logσn+k)[SIAM Journal on Computing 2017] by Navarro and Nekrich, whereσis the alphabet size. We revisit this problem in the external memory model and present three data structures. The first one takesO(n)-space and answer queries inO(p/B+ logBn + k/B+log*(n/B)) I/Os, whereBis the block size. The second one takesO(nlog*(n/B)) space and answer queries in optimalO(p/B+ logBn + k/B)I/Os. In both cases, the answers are reported in the unsorted order of relevance. To handle sorted top-kdocument retrieval, we present anO(nlog(d/B))space data structure with optimal query cost.

     
    more » « less
  2. Mikolaj Bojanczyk ; Emanuela Merelli ; David P. Woodruff (Ed.)
    Two equal length strings are a parameterized match (p-match) iff there exists a one-to-one function that renames the symbols in one string to those in the other. The Parameterized Suffix Tree (PST) [Baker, STOC' 93] is a fundamental data structure that handles various string matching problems under this setting. The PST of a text T[1,n] over an alphabet Σ of size σ takes O(nlog n) bits of space. It can report any entry in (parameterized) (i) suffix array, (ii) inverse suffix array, and (iii) longest common prefix (LCP) array in O(1) time. Given any pattern P as a query, a position i in T is an occurrence iff T[i,i+|P|-1] and P are a p-match. The PST can count the number of occurrences of P in T in time O(|P|log σ) and then report each occurrence in time proportional to that of accessing a suffix array entry. An important question is, can we obtain a compressed version of PST that takes space close to the text’s size of nlogσ bits and still support all three functionalities mentioned earlier? In SODA' 17, Ganguly et al. answered this question partially by presenting an O(nlogσ) bit index that can support (parameterized) suffix array and inverse suffix array operations in O(log n) time. However, the compression of the (parameterized) LCP array and the possibility of faster suffix array and inverse suffix array queries in compact space were left open. In this work, we obtain a compact representation of the (parameterized) LCP array. With this result, in conjunction with three new (parameterized) suffix array representations, we obtain the first set of PST representations in o(nlog n) bits (when logσ = o(log n)) as follows. Here ε > 0 is an arbitrarily small constant. - Space O(n logσ) bits and query time O(log_σ^ε n); - Space O(n logσlog log_σ n) bits and query time O(log log_σ n); and - Space O(n logσ log^ε_σ n) bits and query time O(1). The first trade-off is an improvement over Ganguly et al.’s result, whereas our third trade-off matches the optimal time performance of Baker’s PST while squeezing the space by a factor roughly log_σ n. We highlight that our trade-offs match the space-and-time bounds of the best-known compressed text indexes for exact pattern matching and further improvement is highly unlikely. 
    more » « less